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I. Our purpose is to relate the order of magnitude of real functions
f(x) as x ---+ 0+ to their degree of approximation by piecewise polynomials
interpolating them on some simple denumerable sets of points. A similar
relation, for functions on [I, IX)), is given in [1].

2. Let I be a real function on (0, I] and let k be a positive integer. For
every a E [t, 1] we denote by Pa.leU, x) Pa.leU) the function with domain
(0, a] which in each

I a •n = (aln, a!(n - 1)], n = 2,3, ... , (I)

coincides with the polynomial of degree ~k interpolating I at the k+ I
equally spaced points

Xj = (aln) + (dnlk)j, j 0, I,»>, k, (2)

where dn is the length of Ia •n • In particular, P a •1(f) is a polygonal function,
interpolating I at aln, n = 1, 2, .... In the following theorem we relate the
order of magnitude of f(x) as x ---+ Of-to that of our "degree of approxi
mation"

sup sup 1f(x) - P",kU; x)1
1/2(;0(;1 o<x(;o

as D ---+ °.
Had we defined the "degree of approximation" as supO<x(;o If(x) 

Po,lcCf, x) I for some fixed a, say a = 1, we would have given undue weight
to the behavior off at the points 1, L :}, .... For example, iflis linear on each
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g(x)

[1/n, 1/(n -- I)], n =c= 2,3, ... , the last sup is °whilefcan be of an arbitrarily
large order of magnitude as x --+ 0. It is to avoid such a state of affairs
that we define <f>k.8 as we do.

In Section 4 we show that, in our theorem (in one direction), Pa •k can be
replaced by any piecewise polynomial of degree ~k whose knots are ... , a/3,
a/2, a, not necessarily one arising from interpolation.

3. THEOREM. Let ° eX < k 1 and let pl,il) exist and be non-
decreasing or nonincreasing in (0, I]. Then f(x) CO"" O(X~-k-l) as x -~ 0
iff <f)k,8 = O(on) as 0 ~~ O.

In Section 5 we show that the monotonicity requirement in the Theorem
cannot be removed. In Section 6 we give an example of an f, with
<f)l,8 = 0(0) as 0 ---->- 0, which is not even measurable, showing that having
such a degree of approximation does not imply any smoothness of the func
tion.

Proof of the theorem. Assume that fll, ,I) is non increasing in (0, I]
(otherwise, consider -1). Let

. klf(J)(I)
.I(x) _. I '~.,- (x -- IV

i=O J.

so that g(l) c g'( I) , gU" 1)(1) 0 and gfl.l)(X)'"'"' f tk i l)(x) --
f tk+1)(I). Also g(x) - f(x) tj;(x) -- [ftkil)(I)/(k L I)!](x - Wt-1 where
tj;(x) is a polynomial of degree ~k so that

I)!] P",I,«X I)/r:l).

Let 0 < 1 ,~ 0 :o:.~ ,~ and let a E n, I]. Then 1 belongs to some fa,n(n 2)
so that

a/[2(11 -- I)] all1 o.
k

Clearly Pa,!.;(x ~ 1)1.'1\ t) coc (I - 1)1'1 1
- TIi~o (t _. Xi), where the Xi

are given by (2), and ITI:~o (t_. Xi)! < d~+1 < (402)kl. Hence h(r)
get) - f(t) - Pa,/oC g - f, t) satisfies

! h(t)i ~ if u, 'l)(I)/(k -+ I)! j (402)kll.

Observe that get) - P0.1.'( g, I) -~ f(t) - Po,k(f, t) h(t), which clearly
implies that <f)k,8 = O(on) as 0 ---->- 0 1 iff <g)k,8= O(o~) as 0 -~ 0 1 • Also
f(x)== O(X~-k-l) as x -+ 0 1 iff g(x) 0(Xa - k - 1) as x-+ Oi. Therefore
we may assume without loss of generality that

f(j)(I) = O,j = 0, I, ... , k -+ I, and hence (-I)iPi, iI-I) is ?:O
and nonincreasing in (0, 1] for j 0, I, ... , k+ I. (3)
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Suppose now that M is a number such that
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<f>k,8 ~ Moa for all positive 0 ~ some 00 E (0, -H (4)

Let °< x ~ 00 , Define the integer n (> 2) and the numbers a and x
by (see (2»

I/n < x ~ l/(n - I) < 2/n, a == (n -- I) x, x = (a/n) + dn(2k)-1. (5)

Then t < a ~ 1, °< oX < x.
By the remainder theorem for Lagrange interpolation [2, p. 56], using

again the notation (2), for some gE (a/n, a/en - I»,

, ~ ~,Pk+1)(g) k ,
!.r(x) - Pa,if, x)1 = (k + I)! I! I x - Xi I

= PHll(g) [ a ] k+1 . I
(k+l)! 2kn(n-l) ·3 .. ·(2k-l) (6)

so that

(7)

where Mk == M(k + I)! (8k)k-t1(l ·3 ... (2k - 1)]-1; the first two in
equalities are from (3) and the third from (6), (4) and (5).

By (3) and (7), for every x E (0, 1],

Successive integrations, using (3), yield

as required.
For the converse, suppose that, for some constant J,

I f(x) [ ~ JXa - k- 1 throughout (0, I].

Then, forj = 0, 1'00" k --L I,

throughout (0, 1]

(8)

°~ (-I)k i1-j fli)(X) ~ CjXa- k - H throughout (0, 1],
C

j
-,-c 2j (k-a)-1+[li+1)(j1-2) /2]J.

where
(9)

This is true for j = °by (3) and (8) and assuming its truth for some j,
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o ~.i k, we have, for every x E (0, I] and a proper y E (x/2, x),

- Cj (X/2),-k-H ~ (-IY- j jU)(x/2) ~ (-ly-Hl[fU)(X) - jU)(x/2)]

(-IY-if-l(X/2)pif-l)(y) (-lY-j;1(x/2)jU lI(X)

so that 0 (-l)k'l-u llfll/ll(X) 2' I. 2iiC
j
X,-I.-IU I) Cj~lX\-I.I-UI!)

Let -~ a 1,0 < x D~. For a proper n 2, xGIn,n (see (I».
Using again (2) and the above remainder theorem, we have, for some
'I) E (a/n, a/(n - I»,

I:

II(x) -- Pa.kU; x)1 -~~ [fIWI('I)/(k j- I)!] I1 I x - Xj
j~O

By (9) with.i k + I,

Ij(x) - Pa.kU; x)1 Ck+l'l)'-2k-2[a/{n(n - I)}F"l/(k I)!

Ck+1'l),-k-l(n - I)-i.-l!(k + I)!

Ck+1(a/n)'-k-l(2/n)kil/(k I I)!

Ck+l(a/n)' 41.; l/(k I)! [4!' i lCf,l/(k I)!) D".

This completes the proof.

4. COROLLARY. Assume the hypotheses of the Theorem. A necessary
and sufficient condition for j(x) to be O(X,-/,'-l) as x --+ 0 i is the existence,

for each a E [t I], of a function Q,,(x) with domain (0, a), continuous there,
which in each I".n of(I) coincides with some polynomial ofdegree ~k such that

sup SUP! j(x)- QaCx)! OeD')
1,'2":11<1 O<,,<;;:r'J

as D --+ 0 .

Proof Only sufficiency needs proof. Let fL and D1(0 < D1

hers such that
D be num-

sup sup i I(x) - Q,,(x)
1.12(:a::::1 o<;-r<;B

Let 0 < t ~ 6 ~ 61/2, a E [~, 1] and set

For some n 3, t E Io,n and, using (2),

I.. I.

Ro(t) I Ro(xj ) I1 (t xJ!(x, - xJ.
i=O s=O

-,,*i
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For j 0, L..., k, 0 < Xj ~ a/(n - I) < 2aln < 2t 20 ~ 01 and hence

Therefore I Ra(t)1 ~ (k + I) k/'fL(20)1X and hence ,f(t) - Pa.k(f, t)] ~

fL[I (k'- I) k/'21X ] OIX. Thus (f)/c,6 ~ fL[1 + (k + I) kk21X ] 0' if 0 < 0 ;(
0]/2 and, by our Theorem, f(x) O(X'-k-l) as x - 0 1

•

5. We show that the monotonicity requirement in the Theorem cannot
be removed. Consider the function G(x) == X-I + sin(7Tx-l), analytic in
(0, I]. Take k IX =c I. Then G(x) = O(xo

-
k - I) as x - 0, but (G)u is

not 0(0") as 8 ~ 0 '. For suppose it is. For every a E £1, I], t E (0, a] we have

This readily implies, for every 0 E (O,H

and hence. by our Theorem applied to f(x) c'

as o-~ 0 .

But since PI.1(sin(7Tx-l), t) == 0, (sin(7Tx- l)],il ? 1 for every 0 E (O,n

6. We finally construct a real function F on (0, I] for which (F)1.8 == 0(0)
as 0 ->0 0 i but which is measurable in no (0, 0), 0 < 0 ~ I.

For n 2,3, ... let H n be a nonmeasurable subset of (lIn, I/(n - I)]
and let H ..•. U~:~2 H n . For each x E (0, I] let F(x) ~. x-l if x t/C H while,
if x lies in some H n , let F(x) X-I -+ w' so that I F(x) -- x-' I < x. Taking
in our Theorem f(x) == x-" ex = k= I, we have (x-]>1.8 2560 for all
8 E (0, ~] (see the end of its proof). Let 0 < t ;( 0 ~ L'~ a ~ I, say
'E lo.n. As aln < 0, al(n - I) ~ 2aln, we have] F(aln) - (aln)-I] < 0,
I F(al(n - I)) -- (a/(n - 1))-] I < 20. Hence 1Po.I(F(x) - r\ 01 < 20 and
therefore

F(t) - Pa.I(F, 01 ~ i t-l - Pa.l(x-', t)1 -;- 1F(t)- ,-I I
+ I Pa.tCF(x) - X-I, t)] < 2598.

Hence (F'\1,6 c=. 0(8) as 8 _ Oi.
Let 0 0 ~ I, and let n be an integer >1 + 8-'. If F were measurable

in (0,0), so would be F(x) - x- I in S == (lIn, l/(n - I)]; hence the subset
T of S where F(x) - X-I =1= 0 would be measurable; but T is the non
measurable set H n .
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